Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2258706

ABSTRACT

Background The global epidemiological situation of COVID-19 remains serious. The rapid hunting of SARS-CoV-2 infection is the key means for preventing transmission. Methods A total of 40,689 consecutive overseas arrivals were screened for SARS-CoV-2 infection based on PCR and serologic testing. The yield and efficiency of different screening algorithms were evaluated. Result Among the 40,689 consecutive overseas arrivals, 56 (0.14%) subjects were confirmed to have SARS-CoV-2 infection. The asymptomatic rate was 76.8%. When the algorithm based on PCR alone was used, the identification yield of a single round of PCR (PCR1) was only 39.3% (95% CI: 26.1–52.5%). It took at least four rounds of PCR to achieve a yield of 92.9% (95% CI: 85.9–99.8%). Fortunately, an algorithm based on a single round of PCR combined with a single round of serologic testing (PCR1+ Ab1) greatly improved the screening yield to 98.2% (95% CI: 94.6–100.0%) and required 42,299 PCR and 40,689 serologic tests that cost 6,052,855 yuan. By achieving a similar yield, the cost of PCR1+ Ab1 was 39.2% of that of four rounds of PCR. For hunting one case in PCR1+ Ab1, 769 PCR and 740 serologic tests were required, costing 110,052 yuan, which was 63.0% of that of the PCR1 algorithm. Conclusion Comparing an algorithm based on PCR alone, PCR combined with a serologic testing algorithm greatly improved the yield and efficiency of the identification of SARS-CoV-2 infection.

2.
Front Public Health ; 11: 1077075, 2023.
Article in English | MEDLINE | ID: covidwho-2258707

ABSTRACT

Background: The global epidemiological situation of COVID-19 remains serious. The rapid hunting of SARS-CoV-2 infection is the key means for preventing transmission. Methods: A total of 40,689 consecutive overseas arrivals were screened for SARS-CoV-2 infection based on PCR and serologic testing. The yield and efficiency of different screening algorithms were evaluated. Result: Among the 40,689 consecutive overseas arrivals, 56 (0.14%) subjects were confirmed to have SARS-CoV-2 infection. The asymptomatic rate was 76.8%. When the algorithm based on PCR alone was used, the identification yield of a single round of PCR (PCR1) was only 39.3% (95% CI: 26.1-52.5%). It took at least four rounds of PCR to achieve a yield of 92.9% (95% CI: 85.9-99.8%). Fortunately, an algorithm based on a single round of PCR combined with a single round of serologic testing (PCR1+ Ab1) greatly improved the screening yield to 98.2% (95% CI: 94.6-100.0%) and required 42,299 PCR and 40,689 serologic tests that cost 6,052,855 yuan. By achieving a similar yield, the cost of PCR1+ Ab1 was 39.2% of that of four rounds of PCR. For hunting one case in PCR1+ Ab1, 769 PCR and 740 serologic tests were required, costing 110,052 yuan, which was 63.0% of that of the PCR1 algorithm. Conclusion: Comparing an algorithm based on PCR alone, PCR combined with a serologic testing algorithm greatly improved the yield and efficiency of the identification of SARS-CoV-2 infection.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , Algorithms , COVID-19/diagnosis , COVID-19/epidemiology , Polymerase Chain Reaction , SARS-CoV-2
3.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2200956

ABSTRACT

To obtain more insight into IgM in anti-SARS-CoV-2 immunity a prospective cohort study was carried out in 32 volunteers to longitudinally profile the kinetics of the anti-SARS-CoV-2 IgM response induced by administration of a three-dose inactivated SARS-CoV-2 vaccine regimen at 19 serial time points over 456 days. The first and second doses were considered primary immunization, while the third dose was considered secondary immunization. IgM antibodies showed a low secondary response that was different from the other three antibodies (neutralizing, total, and IgG antibodies). There were 31.25% (10/32) (95% CI, 14.30-48.20%) of participants who never achieved a positive IgM antibody conversion over 456 days after vaccination. The seropositivity rate of IgM antibodies was 68.75% (22/32) (95% CI, 51.80-85.70%) after primary immunization. Unexpectedly, after secondary immunization the seropositivity response rate was only 9.38% (3/32) (95% CI, 1.30-20.10%), which was much lower than that after primary immunization (p = 0.000). Spearman's correlation analysis indicated a poor correlation of IgM antibodies with the other three antibodies. IgM response in vaccinees was completely different from the response patterns of neutralizing, total, and IgG antibodies following both the primary immunization and the secondary immunization and was suppressed by pre-existing immunity induced by primary immunization.

4.
Sci Rep ; 12(1): 21132, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2151070

ABSTRACT

International flights have accelerated the global spread of Coronavirus Disease 2019 (COVID-19). Determination of the optimal quarantine period for international travelers is crucial to prevent the local spread caused by imported COVID-19 cases. We performed a retrospective epidemiological study using 491 imported COVID-19 cases in Chengdu, China, to describe the characteristic of the cases and estimate the time from arrival to confirmation for international travelers using nonparametric survival methods. Among the 491 imported COVID-19 cases, 194 (39.5%) were asymptomatic infections. The mean age was 35.6 years (SD = 12.1 years) and 83.3% were men. The majority (74.1%) were screened positive for SARS-CoV-2, conducted by Chengdu Customs District, the People's Republic of China. Asymptomatic cases were younger than presymptomatic or symptomatic cases (P < 0.01). The daily number of imported COVID-19 cases displayed jagged changes. 95% of COVID-19 cases were confirmed by PT-PCR within 14 days (95% CI 13-15) after arriving in Chengdu. A 14-day quarantine measure can ensure non-infection among international travelers with a 95% probability. Policymakers may consider an extension of the quarantine period to minimize the negative consequences of the COVID-19 confinement and prevent the international spread of COVID-19. Nevertheless, the government should consider the balance between COVID-19 and socioeconomic development, which may cause more serious social and health crises.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Retrospective Studies , SARS-CoV-2 , Government , China/epidemiology
5.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2124726

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Serologic testing is complementary to nucleic acid screening to identify SARS-CoV-2. This study aimed to evaluate unspecific reactivity in SARS-CoV-2 serologic tests. Materials and methods Total anti-SARS-CoV-2 antibodies from 46,777 subjects who were screened for SARS-CoV-2 were retrospectively studied to evaluate the incidence and characteristics of the unspecific reactivity. A total of 1,114 pre-pandemic samples were also analysed to compare unspecific reactivity. Results The incidence of unspecific reactivity in anti-SARS-CoV-2 total antibody testing was 0.361% in 46,777 post-pandemic samples, similar to the incidence of 0.359% (4/1,114) in 1,114 pre-pandemic samples (p = 0.990). Subjects ≥ 19 years old had a 2.753-fold [95% confidence interval (CI), 1.130–6.706] higher probability of unspecific reactivity than subjects < 19 years old (p = 0.026). There was no significant difference between the sexes. The unspecific reactivity was associated with 14 categories within the disease spectrum, with three tops being the skin and subcutaneous tissue diseases (0.93%), respiratory system diseases (0.78%) and neoplasms diseases (0.76%). The percentage of patients with a titer ≥ 13.87 cut-off index (COI) in the unspecific reactivity was 7.69%. Conclusion Our results suggest a unspecific reactivity incidence rate of 0.361% involving 14 categories on the disease spectrum. Unspecific reactivity needs to be excluded when performing serologic antibody testing in COVID-19 epidemiological analyses or virus tracing.

6.
J Med Virol ; 94(12): 5746-5757, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1976742

ABSTRACT

We evaluated and compared humoral immune responses after inactivated coronavirus disease 2019 (COVID-19) vaccination among naïve individuals, asymptomatically infected individuals, and recovered patients with varying severity. In this multicenter, prospective cohort study, blood samples from 666 participants were collected before and after 2 doses of inactivated COVID-19 vaccination. Among 392 severe acute respiratory syndrome coronavirus 2-naïve individuals, the seroconversion rate increased significantly from 51.8% (median antispike protein pan-immunoglobulins [S-Igs] titer: 0.8 U/ml) after the first dose to 96% (median S-Igs titer: 79.5 U/ml) after the second dose. Thirty-two percent of naïve individuals had detectable neutralizing antibodies (NAbs) against the original strain but all of them lost neutralizing activity against the Omicron variant. In 274 individuals with natural infection, humoral immunity was significantly improved after a single vaccine dose, with median S-Igs titers of 596.7, 1176, 1086.5, and 1828 U/ml for asymptomatic infections, mild cases, moderate cases, and severe/critical cases, respectively. NAb titers also improved significantly. However, the second dose did not substantially increase antibody levels. Although a booster dose is needed for those without infection, our findings indicate that recovered patients should receive only a single dose of the vaccine, regardless of the clinical severity, until there is sufficient evidence to confirm the benefits of a second dose.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
7.
Front Immunol ; 13: 876037, 2022.
Article in English | MEDLINE | ID: covidwho-1847175

ABSTRACT

Background: Due to anti-SARS-CoV-2 antibody decay and SARS-CoV-2 variants, vaccine booster doses are a constant concern. It was focused on whether the third dose can quickly evoke and activate immunity and produce a sufficient and durable immune protection. Objectives: To evaluate the responses and durations of five subsets of anti-SARS-CoV-2 antibodies and their predictive values for protection after the administration of a three-dose inactivated SARS-CoV-2 vaccines regimens. Methods: A prospective cohort study of five subsets of anti-SARS-CoV-2 antibodies (neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA) was carried out to evaluate the efficacies and immune characteristics of a three-dose inactivated SARS-CoV-2 vaccines regimen in 32 volunteers. The dynamic response and immune decay were longitudinally profiled at 18 serial time points over 368 days. Results: The neutralizing antibody, anti-RBD total antibody, anti-Spike IgG and anti-Spike IgA levels rapidly increased to 773.60 (380.90-1273.00) IU/mL, 639.30 (399.60-878.60) AU/mL, 34.48 (16.83-44.68) S/CO and 0.91 (0.35-1.14) S/CO, respectively, after the administration of the third dose. Compared to the peak value after the second dose, these values were increased by 4.22-fold, 3.71-fold, 1.01-fold and 0.92-fold. On the other hand, the half-lives of the neutralizing antibody, anti-RBD total antibody, and anti-Spike IgG were 56.26 (95% CI, 46.81 to 70.49) days, 66.37 (95% CI, 54.90 to 83.88) days, and 82.91 (95% CI, 63.65 to 118.89) days, respectively. Compared to the half-lives after the second dose, these values were increased by 1.71-fold, 2.00-fold, and 2.93-fold, respectively. Nevertheless, the positive conversion rate of anti-Spike IgM was decreased to 9.38% (3/32), which was much lower than that after the second dose (65.63% (21/32)). Conclusions: Compared to the second dose, the third dose dramatically increased the antibody levels and decay times. However, the half-life of neutralizing antibody remained unsatisfactory. Due to decay, a fourth dose, and even annual revaccination, might be considered in the SARS-CoV-2 vaccination management strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Prospective Studies , Vaccines, Inactivated
8.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1610580

ABSTRACT

Background A vaccine against coronavirus disease 2019 (COVID-19) with highly effective protection is urgently needed. The anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody response and duration after vaccination are crucial predictive indicators. Objectives To evaluate the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies after vaccination and their predictive value for protection. Methods We determined the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies (neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA) in 61 volunteers within 160 days after the CoronaVac vaccine. A logistic regression model was used to determine the predictors of the persistence of neutralizing antibody persistence. Results The seropositivity rates of neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA were only 4.92%, 27.87%, 21.31%, 3.28% and 0.00%, respectively, at the end of the first dose (28 days). After the second dose, the seropositivity rates reached peaks of 95.08%, 100.00%, 100.00%, 59.02% and 31.15% in two weeks (42 days). Their decay was obvious and the seropositivity rate remained at 19.67%, 54.10%, 50.82%, 3.28% and 0.00% on day 160, respectively. The level of neutralizing antibody reached a peak of 149.40 (101.00–244.60) IU/mL two weeks after the second dose (42 days) and dropped to 14.23 (7.62–30.73) IU/mL at 160 days, with a half-life of 35.61(95% CI, 32.68 to 39.12) days. Younger participants (≤31 years) had 6.179 times more persistent neutralizing antibodies than older participants (>31 years) (P<0.05). Participants with anti-Spike IgA seropositivity had 4.314 times greater persistence of neutralizing antibodies than participants without anti-Spike IgA seroconversion (P<0.05). Conclusions Antibody response for the CoronaVac vaccine was intense and comprehensive with 95.08% neutralizing seropositivity rate, while decay was also obvious after 160 days. Therefore, booster doses should be considered in the vaccine strategies.

SELECTION OF CITATIONS
SEARCH DETAIL